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1. Introduction 

High-performance parallel computing is having a  profound impact on  the size and 
complexity of physical problems which can be modeled. This impact has been a  long time 
in coming, because the learning curve in adapting to this new world of computing is 
steeper  than  was  imagined. Nevertheless, more and more success stories have convinced 
Computational scientists that parallel computing is important and is here  to  stay. To 
model complex, 3D physical systems, older paradigms of programming which were 
adequate  in  a 2D world,  now become cumbersome and limiting. 

One  needs  a language with higher levels of abstraction for such problems. A few 
pioneering  computational scientists have turned to the object-oriented paradigm,  and 
particularly C++ for help. Fortran90, while not  a  true object-oriented language, also has 
powerful facilities for abstraction, and object-oriented programming is possible by 
emulating  in software the 00 features which are not in  the  language [1-21. These features 
allow the code to be designed using the same abstractions that exist in object-oriented 
languages, but  in a Fortran framework more familiar to most computational scientists. In 
this  paper,  we will discuss our experience in using Fortran90 for parallel adaptive  mesh 
refinement, scientific visualization,  and  plasma particle-in-cell simulations. 

11. Parallel AMR 

One area we  have been working on is parallel, unstructured  adaptive mesh refinement 
(AMR). Organizing and programming the data  structures for parallel AMR is very 
difficult. The main  structure is the  computational mesh that  represents  a complex 
geometry with many components. With the older style programming  paradigms available 
in Fortran77 and C, using parallel AMR is so complex that its use  has been limited. Object- 
oriented  methods  using  C++,  have been applied to manage the complexity for this 
problem before [3].  We have found  that Fortran90  is equally useful. 

For example, a Fortran90 module allows user-defined data  types  and related routines to 
be encapsulated in a class - an  important  feature of object-oriented programming.  A 
mesh-module (abbreviated) can contain the definition of a mesh data  structure  and mesh 
operations: 



module mesh-module 
use mpi-module ; use  heapsort-module 
i m p l i c i t  none 
p r i v a t e  
pub l i c  : :  mesh-create-incore,  mesh-repartition, & 

type mesh 
m e s h v i s u a l i z e  

p r i v a t e  
type (node) , dimension ( : ) , p o i n t e r  : : nodes 
type (edge) , dimension ( : ) , p o i n t e r  : : edges 
type  (element) , dimension ( : ) , p o i n t e r  : : elements 
type(b-element),   dimension(:) ,   pointer  : :boundary-elements 

end  type mesh 
conta ins  
subrout ine  mesh-create-incore(this, mesh-file) 

type  (mesh) , i n t e n t   ( i n o u t )  : : t h i s  
c h a r a c t e r ( l e n = * ) ,   i n t e n t ( i n )  : :  mesh-file 
! d e t a i l s   o m i t t e d  

! a d d i t i o n a l  member rou t ines  
end  subroutine  mesh-create-incore 

end  module mesh-module 

This encourages the development of simple interfaces whose internal features can be 
changed without impacting their usage in the main program. Features of one module can 
be made available to another via the "use" statement. Fortran90 also supports pointer 
structures,  in  addition to many other dynamically allocatable structures. The example 
above illustrates pointers to dynamic arrays. With these features AMR objects  can  be 
created easily 

Sometimes it is  necessary  to  interface  to programs written in other languages. The 
ParMeTiS mesh partitioner [4] is used for parallel mesh partitioning, yet it is written in the 
C programming language. Interlanguage communication between Fortran90 and C is not  a 
problem, once the  proper format for function references  is determined.  Our  design uses a 
single routine  that acts as the conduit between the Fortran90 parallel AMR code and  the C 
mesh  partitioner: 

subrout ine   mesh-repar t i t ion( th is )  
type(mesh) , i n t e n t   ( i n o u t )  : : t h i s  

! s ta tements   omit ted 
c a l l  PARMETIS(mesh-adj, mesh-repart,  nelem,nproc) ! c c a l l  
ca l l  mesh-build(this, new-mesh-repart=mesh-repart) 

end  subroutine  mesh-repartition 

The graph description of the distributed mesh is passed by  reference  to the C code which 
returns  the  partitioning to  Fortran90.  Since  Fortran90 optional arguments can be selected 
by keyword, rebuilding  the mesh using the new partitioning can reuse the same code as 
constructing the original mesh. Since the mesh-build routine is private  to  the  module 
containing the mesh-repartition routine, mesh-build cannot be called by the  main 
program. 

Such features allow  for a very abstract design and representation of source code for 
parallel AMR. A main program  that loads a mesh, distributes it among the parallel 



processors, creates the mesh data  structure, performs repartitioning  and  visualization,  now 
looks like this: 

program pamr 
use  mesh-module 
i m p l i c i t  none 
! s ta tements   omit ted 
type  (mesh) : : in-mesh 

ca l l  MPI-INIT ( i e r r o r )  
c a l l  mesh-create-incore(in-mesh, in-f i le)  
c a l l  mesh-reparti t ionb-mesh) 
c a l l  mesh-visual ize( in-mesh,   "visf i le .pl t")  
c a l l  MPI-FINALIZE ( i e r r o r )  

end  program pamr 

Our  parallel AMR library routines have been applied to the finite-element simulation 
of electromagnetic wave scattering in a  waveguide filter, and long-wavelength infrared 
radiation  in  a quantum well infrared photodetector as test cases in two-dimensions (a 
three-dimensional system is under  development). The software  currently runs  on  the Cray 
T3E, HP/Convex Exemplar, IBM SP2, and Beowulf-class  "pile-of-pc's" running the LINUX 
operating system [SI. 

111. Scientific Visualization 

In the days  when the world was 2D, many computational physicists included graphics 
in the output of their simulation by making use of graphics libraries. In the new 3D world, 
the  amount of expertise required to embed visualization into  simulations is so great,  that 
the  computational scientists have largely abandoned  this altogether, and  do visualization 
in  an independent, post-processing step. This leads to a lot of time-consuming busy  work 
in  moving data  around  and  learning the concepts and  particulars of some visualization 
program. It is not  unusual in our group for a  student to spend an entire  summer  learning 
how to make one beautiful picture of a complex simulation. It also makes interactive 
exploration of simulations nearly impossible. Finally, the underlying  visualization 
programs themselves can change or  disappear  in response to the market place, causing 
further  problems for the scientist. 

Our goal was to remove these barriers to visualization and to provide  a stable 
environment for the scientific programmer.  Our  approach  was to develop  a Fortran90 
class library which produced  a typical 3D graphical image for each particular type of data [6]. 
We call our class library Visual Data Objects (VDO) because its objects describe the  structure 
of the  underlying scientific data  and  are self-visualizing. The  objects are  designed to 
always  produce  a reasonable image by default, and optional controls are  provided so that 
the scientist can customize or  improve the images if desired. The kinds of data objects 
currently  supported  are those most common: lD, 2D, and 3D vector and scalar fields on 
regular meshes, although  support for irregular objects  is planned. The Fortran90 class 
library contains objects which specify the data  structure  and aspects of the visualization, 
information the user needs to control. Only a few lines of code need to be added to the 
program  to  obtain  an image. 

Those commercial and public-domain visualization programs which can be called from 
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an application program  are used as the underlying visualization engines. These programs 
generally have  a  C interface and  are sometimes difficult to call from Fortran. To more 
easily interface with these visualization engines, a C++ library was  written to drive  them. 
This library allows us to change the  underlying engine without  impacting the Fortran 
scientific code. For example, VDO currently supports IBM’s Data  Explorer as a 
visualization engine. We plan to support the Visualization ToolKit  (VTK) in the future 
because it is free and can run on all platforms. Thus, if IBM’s product becomes unavailable 
to the scientist, he or she can request that one of the other visualization engines  be  used. 

There is one C++ visualization class in VDO for each visualization engine, but the 
Fortran program  need not be concerned with  how it operates. The Fortran classes delegate 
to the C++ classes the procedures directly relating to the graphics, while performing  the 
remaining ones itself. In fact, a single routine (Visualize) acts as  the  conduit between the 
Fortran90 and C++ code. Objects in Fortran90 and C++  are generally not compatible. For 
example, Fortran90 pointers  are  hidden  structures and  C++ objects  can contain hidden 
pointers. However, by restricting what goes into an object, we can  safely pass  a Fortran90 
derived  type  that is read  in C++ as a struct and is used in a special constructor to recreate 
the Fortran90 object in C++ [61. 

Visual  Data  Objects was designed to be run from parallel programs. Since many 
installations require  that  long-running parallel programs be run in batch mode, VDO is 
designed to either  display the graphical images or write them to files at  the user’s 
discretion. More information is available on  the web page: 
http:/ /computing.oac.ucla.edu/sciviz/visualdataobjects.htm 

IV. Plasma Particle-in-Cell Simulations 

For the past several years, we have been using both Fortran90 and  C++ for plasma 
simulation. Our first effort was  a plasma particle-in-cell  (PIC) simulation code written  in 
C++, using message-passing on distributed memory parallel computers. Once the  new 
language  features of Fortran90  became known to us, we translated this original C++ code 
into Fortran90 and discovered, somewhat to our  surprise,  that most of the C++ code could 
be translated directly, and the performance of the Fortran90 code was substantially better, 
typically by a factor of two [7-81. This encouraged us to examine Fortran90 further. 

Development of the parallel PIC in both languages has continued, with  ideas  suggested 
by one  language being incorporated into the other. In general, we have found  strengths 
and weaknesses in both languages, discussed in the next section. Our  future  plans  are to 
develop  a flexible, modular set of classes and objects which could be used to quickly 
assemble a  new code targeted for a particular problem domain and architecture. 

V. Conclusions 

For most purposes, Fortran90 has proved very useful in complex,  scientific 
programming. The use of derived types and dynamic memory and  pointers  permitted 
complex structures to be expressed easily and safely.  In general, we  have  found  that 
Fortran90 is a safer language for programming  than C++  and  development is faster, since 
the compiler finds more errors. This  is achieved by restricting or  encapsulating  use of 



’ 2 some language features, such  as pointers, but results in reduced flexibility. 
Perhaps the most notable area where reduced flexibility might be important is the lack 

of language  support for inheritance, which allows related types to share  data and 
procedures. This  lack was addressed by developing emulation techniques for inheritance 
and run-time polymorphism 11-21. (These features will  be supported in  Fortran2000.)  It 
turned  out  that for most of our scientific calculations, inheritance was  not used very much 
neither in Fortran90 nor in CCC. Even when it was used, it was typically  for the  non- 
scientific parts of the problem, such as in performance monitoring or timing. 

example, in  the PIC simulations, lD, 2D, and 3D models have similar organizations and 
interfaces, but the algorithms and  data for  each model are not simply related. We would 
like  to be able to decide at  run time, what kind of model we are running. This desired 
behavior was implemented in Fortran90  by creating polymorphic types that could refer to 
anything  we liked. This was also possible  to do in C++, by creating an abstract interface 
class which contained no  data members or methods, and then have other classes inherit 
nothing  but  the interface. Most  object-oriented languages combine inheritance and  run- 
time polymorphism  into a single language mechanism. The  fact that  inheriting  nothing is 
useful indicates that these concepts probably should be separated. 

Run-time polymorphism was occasionally useful, but not always with inheritance. For 
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